Emulating target trials for nutritional studies:

Instrumental variable methods

Society for Epidemiologic Research June 15, 2022

CAUSALab and Department of Epidemiology Harvard T.H. Chan School of Public Health

HARVARD T.H. CHAN

Overview

Instrumental variable (IV) methods

Mendelian randomization (MR) as an application of IV

Alcohol intake and CVD

Simple analogy between MR and randomized controlled trials Target trial emulation using MR $\,$

Threats to emulation success

Instrumental variable conditions

Need a variable (i.e., an instrument, Z) that meets three conditions:

1. Relevance

Associated with exposure

2. Exclusion restriction

Does not affect outcome except through potential effect on exposure

Canonical IV DAG

3. Independence

No common causes (or other sources of lack of exchangeability) with outcome

To estimate a point effect, need homogeneity or monotonicity

1. Instrumental variable (IV) methods

Mendelian randomization (MR) studies of nutritional factors as an application of IV

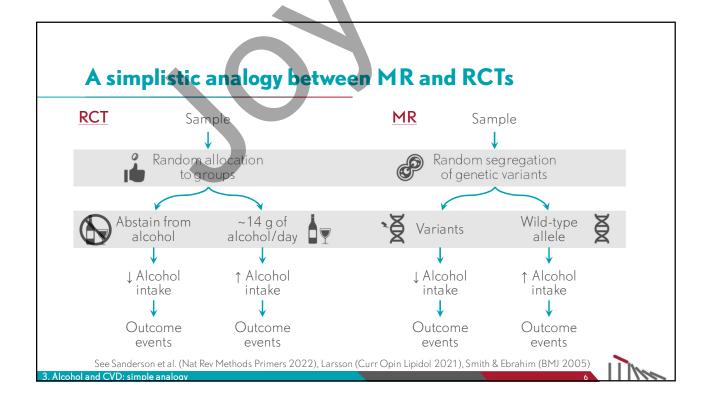
- Increasingly popular application of IV
- Genetic variants used as proposed instruments
- Leverage genetic data to estimate the effect of a non-genetic exposure on an outcome

- Z: genetic variant(s) related to alcohol intake
- A: alcohol intake
- Y: coronary heart disease

2. Mendelian randomization (MR) as an application of IV

The appeal of MR studies

Identify causal effects even with unmeasured confounding



"Natural analogue" of a randomized controlled trial

Estimate the long-term ("lifetime") effects of exposures

2. Mendelian randomization (MR) as an application of IV

The appeal of MR studies

The New York Times

Does Moderate Drinking Protect Your Heart? A Genetic Study Offers a New Answer.

"Because the variants are distributed randomly in a population, they can serve in a study as the equivalent of randomly assigning people to abstain or to drink at varying levels."

Mendelian randomization (MR) as an application of IV

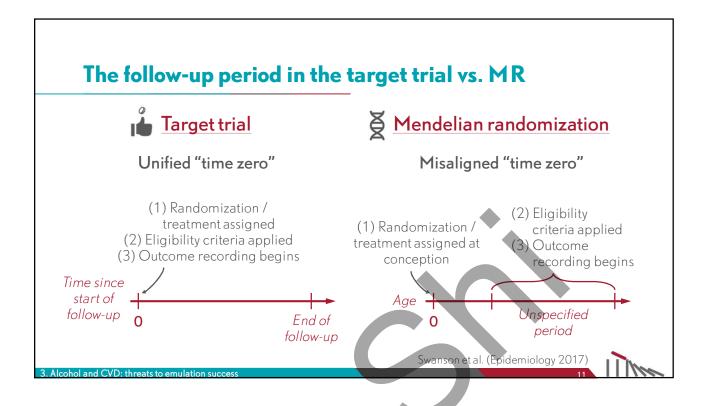
Why explicitly emulate a target trial for MR studies?

Ideal Reality

- \ Ideally like to emulate
- Can realistically emulate using MR

Avoid methodological pitfalls

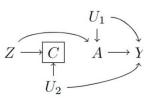
Inform the plans to use or avoid a MR approach


Alcohol and CVD: target trial emulation

Consider a target trial for alcohol intake and CVD

Protocol component	Target trial specification	Target trial emulation
Eligibility criteria	 ≥50 years old No history of CVD, alcohol/substance abuse No intolerance or allergy to alcohol No chronic kidney or liver disease 	Same, plus • Must have available genetic data
Treatment strategies	 Never drink One standard serving (~14 g) daily of a preferred alcohol beverage 	Same
Assignment procedures	Randomly assigned at baseline; unblinded	Randomly assigned at conception, assuming IV conditions hold

Protocol component	Target trial specification	Target trial emulation
Follow-up period	Start: at randomization End: development of the outcome, loss to follow-up, or administrative end of follow-up	Start: time of eligibility criteria/outcome recording End: same
Outcome	Time to first occurrence of CVD event	Same
Causal contrasts of interest	Per-protocol effect	Same
Analysis plan	Per-protocol analysis accounting for time-varying adherence	Same


The follow-up period in the target trial vs. MR

Emulate RCTs with a lag between time of randomization and time of eligibility/outcome recording

- Lag time can be years or decades
- Average age of 50+ years for participants in MR studies of nutritional factors

Post-randomization selection may introduce bias

- ➤ Genetic factor (instrument) related to survival, eligibility, etc.
- **∨** Violation of instrumental conditions

Swanson et al. (Epidemiology 2017)

Me

B. Alcohol and CVD: threats to emulation success

Analysis plan: (Adherence to a given) diet changes over time...

Expect per-protocol analysis to incorporate repeated measures of adherence

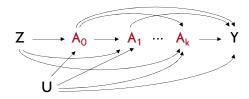
Estimate long-term effects of a given dietary intervention

Conventional Mendelian randomization

Generally conducted on a single measurement of "adherence" / exposure.

MR estimate often interpreted as a "lifetime effect"

Requires strong, unverifiable assumptions about genetic effects over time[†]

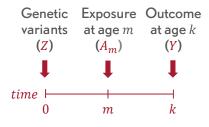

Labrecque and Swanson (AJE 2019)

11/1/100

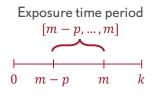
Alcohol and CVD: threats to emulation success

Analysis plan: (Adherence to a given) diet changes over time...

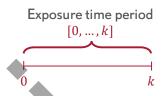
- Methods which can accommodate repeated measures of a time-varying exposure, e.g.
 - o G-estimation of structural nested models[†]
- Be explicit about the causal estimand of interest
 - o Multiple causal estimands can be targeted
 - Different assumptions needed



[†]Shi et al. (Epidemiology 2022), Shi et al. (BMC Med Res Methodol 2022)


3. Alcohol and CVD: threats to emulation success

1


What types of causal estimands can we target?

Point effect: e.g., effect of alcohol at age 50

Period effect: e.g., effect of alcohol from age 50-60

Lifetime effect

Takeaways

Mendelian randomization (and IV methods) are an appealing alternative to confounding-adjustment methods

Given the complexities of studying nutritional factors, more explicit target trial emulation in MR studies can clarify:

- ➤ Sources of potential biases (e.g., misalignments in time zero)
- ➤ An appropriate analytical strategy that accommodates the timevarying nature of diet (e.g., g-estimation of SMMs)
- The causal estimand of interest

Acknowledgements

Miguel A. Hernán

- ► Elizabeth W. Diemer
- **►** CAUSALab
- **∨** VA-CAUSAL Methods Core (CSP#2032)

A Center to Learn What Works

SCHOOL OF PUBLIC HEALTH

Questions

Email: joyshi@hsph.harvard.edu

@joy_shi1

HARVARD T.H. CHAN