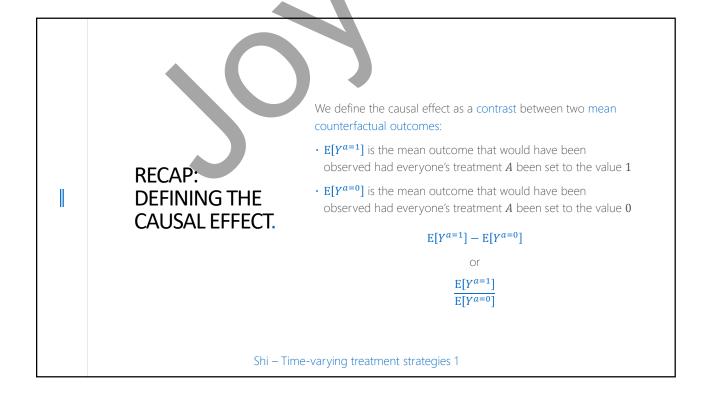
INTRODUCTION TO TIME-VARYING TREATMENT STRATEGIES Joy Shi GAUSALab, Department of Epidemiology Harvard T.H. Chan School of Public Health

By the end of the session, you will be able to: 1. Formulate causal questions for time-varying treatments 2. Describe treatment-confounder feedback and recognize its structure on a DAG 3. Understand why conventional methods fail in the presence of treatment-confounder feedback Shi – Time-varying treatment strategies 1

	 Recap Defining causal effects for time-varying
PLAN FOR TODAY.	treatments 3. Time-varying treatments and confounders on a DAG
	4. Sequential exchangeability
	5. Treatment-confounder feedback
Shi – Time-varyi	ing treatment strategies 1



We need assumptions to estimate causal effects:

 Conditional exchangeability: the mean outcome in the treated would have been the same as the mean outcome in the untreated, had they been treated, and vice versa, within levels of L

 $Y^a \perp \!\!\!\perp A \mid L$ for all a

- 2. Positivity: the probability of being assigned to each treatment level is greater than 0 within levels of L $\Pr[A=a|L=l]>0$ for all a_il if $\Pr[L=l]\neq 0$
- 3. Consistency: an individual's counterfactual outcome under their observed treatment level is equal to their observed outcome

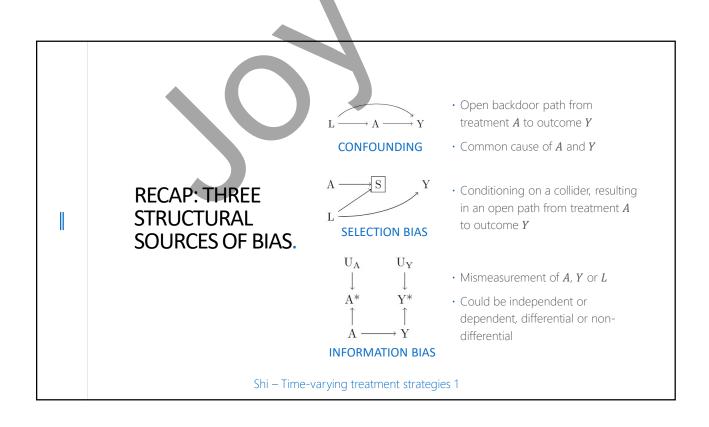
 $Y^a = Y$ when observed treatment A is equal to a

Shi – Time-varying treatment strategies

RECAP:

ASSUMPTIONS FOR

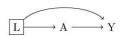
CAUSAL INFERENCE.



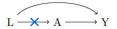
RECAP: METHODS TO ADJUST FOR CONFOUNDING.

Stratification

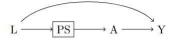
• Outcome regression with confounders



· Inverse probability weighting



Propensity scores



Standardization

These methods vary with respect to their modelling assumptions, but all of these methods address confounding by blocking or removing backdoor paths from treatment *A* to outcome *Y*.

Shi – Time-varying treatment strategies

TIME FIXED VERSUS TIME-VARYING TREATMENTS.

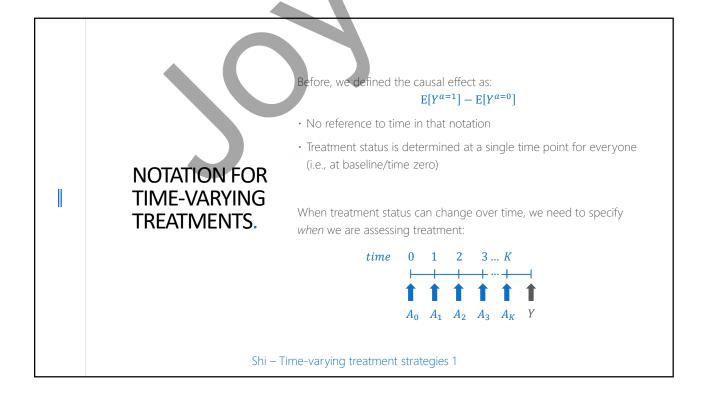
Up until this point, we've discussed these methods in the context of a time-fixed treatment, e.g.

- Surgery vs. no surgery
- · Vaccine vs. no vaccine

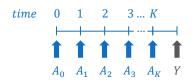
However, most treatments of interest are time-varying, e.g.

- Medication use (e.g., aspirin, anti-retroviral therapy)
- Smoking
- Diet

1. Recap 2. Defining causal effects for time-varying treatments 3. Time-varying treatments and confounders on a DAG 4. Sequential exchangeability 5. Treatment-confounder feedback Shi – Time-varying treatment strategies 1



TREATMENT HISTORY.



Treatment status can change over time, e.g.,

 $A_0 = 0$ if someone didn't take treatment at time 0

 $A_1 = 1$ if that person then starts taking treatment at time 1

 $A_2 = 1$ if that person continues to take treatment at time 2

 $A_3 = 0$ if that person then stops taking treatment at time 3

•••

We use an overbar over treatment A_k denote the treatment history from the beginning of the study (time 0) to time k

e.g.,

$$\bar{A}_3 = (A_0, A_1, A_2, A_3)$$

When we refer to the entire treatment history (from time 0 to time K), we denote this as

 \bar{A}_K or as \bar{A} (without a subscript)

Shi – Time-varying treatment strategies

TREATMENT STRATEGIES.

A treatment strategy is a rule to assign treatment at each time point from the beginning to the end of the study.

Examples:

· Never treat

$$\bar{A} = (A_0 = 0, A_1 = 0, A_2 = 0, \dots, A_K = 0)$$

 $\equiv (0,0,0,\dots 0)$
 $\equiv \bar{0}$

· Always treat

$$\bar{A}=(1,1,1,\dots 1)\equiv \bar{1}$$

• Treat at every other time point, starting with giving treatment at time 0

$$\bar{A} = (1,0,1,0,...)$$

• Treat while $L_k=0$; stop treatment when $L_k=1$ and stay off treatment after that time

STATIC VERSUS DYNAMIC TREATMENT STRATEGIES.

The first three examples of treatment strategies on the previous slides are examples of static treatment strategies:

• Never treat: $\bar{A} = (0,0,0,...0)$

• Always treat: $\bar{A} = (1,1,1,...1)$

• Treat at every other time point, starting with giving treatment at time 0: $\bar{A} = (1,0,1,0,...)$

Treatment assignment at each time point does not depend on a time-varying covariate L_k

The last example is an example of a dynamic treatment strategy:

• Treat while $L_k=0$; stop treatment when $L_k=1$ and stay off treatment after that time

• E.g., let L_k represent the development of a contraindication; the strategy above says to take medication until the development of a contraindication (i.e., $L_k = 1$) and stay off treatment thereafter

Assignment of treatment in a dynamic treatment strategies relies on the evolution of a time-varying \boldsymbol{L}_k

Shi – Time-varying treatment strategies

CAUSAL EFFECT FOR A TIME-VARYING TREATMENT.

A causal effect for a time-varying treatment is a contrast between the mean counterfactual outcomes under two different treatment strategies:

$$E[Y^{\bar{a}}] - E[Y^{\bar{a}'}]$$

For example, perhaps we want to compare the strategy "always treat" against the strategy "never treat". We can define the causal estimand as:

$$E[Y^{\bar{a}=\overline{1}}] - E[Y^{\bar{a}'=\overline{0}}]$$

For simplicity, we're only going to consider comparing the effects of static treatment strategies. Estimating the effects of dynamic treatment strategies adds additional complexities that are outside the scope of this lecture.

1. Recap 2. Defining causal effects for time-varying treatments 3. Time-varying treatments and confounders on a DAG 4. Sequential exchangeability 5. Treatment-confounder feedback

TIME-VARYING TREATMENTS ON A DAG. For a time-fixed treatment, we For a time-varying treatment, we could have the following could have the following DAG: DAG: This is the DAG we would expect Notice that each time point of the time-varying treatment for an ideal randomized trial of a is a separate node. time-fixed treatment. This is the DAG for a sequentially randomized trial of a time-varying treatment: - Randomize treatment at time 0 ($A_0=0$ or $A_0=1$) • Randomize treatment at time 1 ($A_1 = 0$ or $A_1 = 1$) Shi – Time-varying treatment strategies 1

For a time-fixed treatment, we only had to worry about confounders at baseline:

TIME-VARYING TREATMENTS AND CONFOUNDERS ON A DAG.

With observational data, we expect to have treatment-outcome confounders.

For a time-varying treatment, we could have:

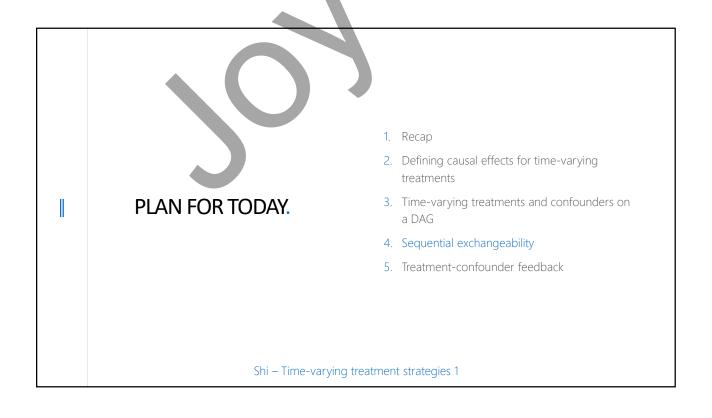
Time-varying treatment, we could have:

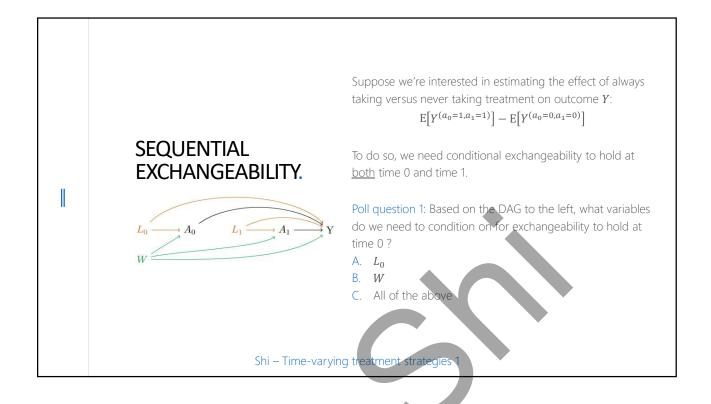
Time-fixed confounders (W) at baseline, and

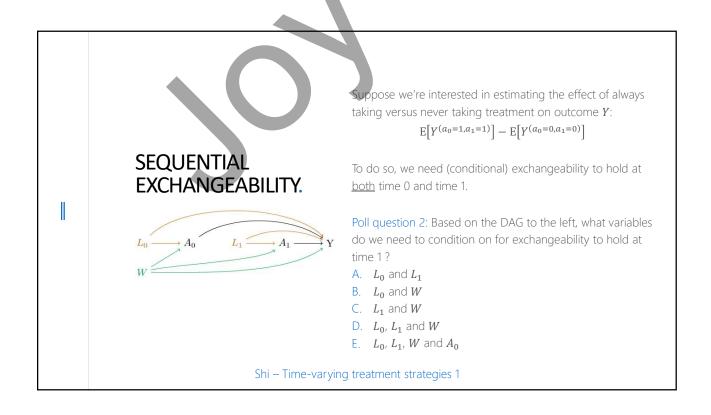
Time-varying confounders (L_k)

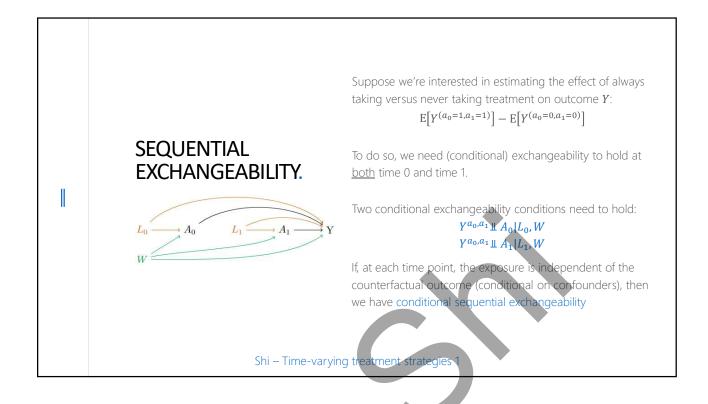
Note: W I start using just 2 time points for simplicity but everything we'll discuss also applies to scenarios with >2 time points

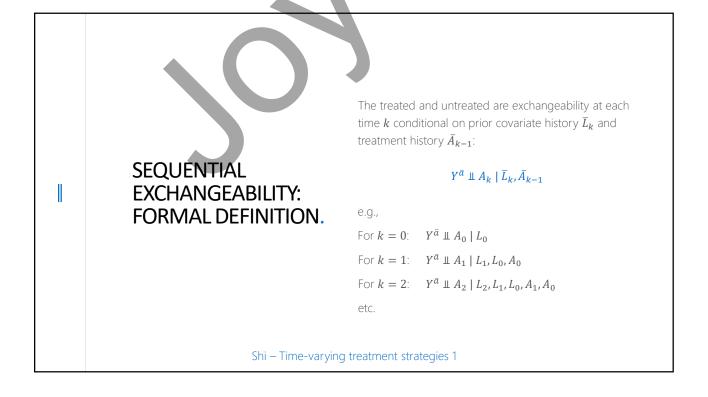
Shi – Time-varying treatment strategies 1





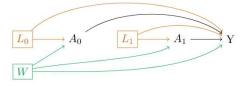






ESTIMATING THE JOINT EFFECT OF A_0 AND A_1 .

In this particular example, we can estimate the joint effect of A_0 and A_1 by conditioning on:



For example, we could fit the following outcome regression model:

$$E[Y|A_0, A_1, \mathbf{L_0}, \mathbf{L_1}, W] = \beta_0 + \beta_1 A_0 + \beta_2 A_1 + \beta_3 \mathbf{L_0} + \beta_4 \mathbf{L_1} + \beta_5 W$$

Poll question 1: Using outcome regression, we can estimate.

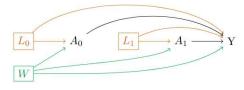
- A. A marginal causal effect of A_0 and A_1 (e.g., $\mathbb{E}[Y^{(a_0=1,a_1=1)}] \mathbb{E}[Y^{(a_0=0,a_1=0)}]$)
- B. A conditional causal effect of A_0 and A_1 (e.g., $\mathbb{E}[Y^{(a_0=1,a_1=1)}|L_0,L_1,W] \mathbb{E}[Y^{(a_0=0,a_1=0)}|L_0,L_1,W]$)

Shi – Time-varying treatment strategies

ESTIMATING THE JOINT EFFECT OF A_0 AND A_1 .

In this particular example, we can estimate the joint effect of A_0 and A_1 by conditioning on:

$$L_0$$
, L_1 and W



For example, we could fit the following outcome regression model:

$$E[Y|A_0, A_1, \mathbf{L_0}, \mathbf{L_1}, W] = \beta_0 + \beta_1 A_0 + \beta_2 A_1 + \beta_3 \mathbf{L_0} + \beta_4 \mathbf{L_1} + \beta_5 W$$

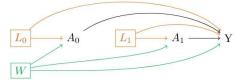
Poll question 2: $\mathbb{E}[Y^{(a_0=1,a_1=1)}|L_0,L_1,W] - \mathbb{E}[Y^{(a_0=0,a_1=0)}|L_0,L_1,W]$ is equal to

A. β_1

- $\beta_1 + \beta_2$
- B. β_2
- D. $\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5$

ESTIMATING THE JOINT EFFECT OF A_0 AND A_1 .

In this particular example, we can estimate the joint effect of A_0 and A_1 by conditioning on:



For example, we could fit the following outcome regression model:

$$\mathbb{E}[Y|A_0,A_1,\textcolor{red}{L_0},\textcolor{blue}{L_1},W] = \beta_0 + \beta_1 A_0 + \beta_2 A_1 + \beta_3 \textcolor{blue}{L_0} + \beta_4 \textcolor{blue}{L_1} + \beta_5 W$$

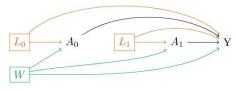
- β_1 represents the effect of A_0 , conditional on A_1, L_0, L_1 and W
- β_2 represents the effect of A_1 , conditional on A_0, L_0, L_1 and W
- $\beta_1 + \beta_2$ represents the joint effect of A_0 and A_1 conditional on L_0, L_1 and W

Shi – Time-varying treatment strategies

ESTIMATING THE JOINT EFFECT OF A_0 AND A_1 .

In this particular example, we can estimate the joint effect of A_0 and A_1 by conditioning on:

$$L_0$$
, L_1 and W



We could also have interaction between A_0 and A_1 :

$$\mathbb{E}[Y|A_0,A_1,\textcolor{red}{L_0},\textcolor{blue}{L_1},W] = \beta_0 + \beta_1 A_0 + \beta_2 A_1 + \beta_3 A_0 A_1 + \beta_4 \textcolor{blue}{L_0} + \beta_5 \textcolor{blue}{L_1} + \beta_6 W$$

i.e., the effect of A_0 and A_1 together is more than the sum of their individual contributions.

Poll question 3: $\mathbb{E}[Y^{(a_0=1,a_1=1)}|L_0,L_1,W] - \mathbb{E}[Y^{(a_0=0,a_1=0)}|L_0,L_1,W]$ is equal to

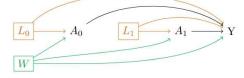
A. β_1

- C. $\beta_1 + \beta_2$
- E. $\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6$

- B. β_2
- D. $\beta_1 + \beta_2 + \beta_3$

ESTIMATING THE JOINT EFFECT OF A_0 AND A_1 .

In this particular example, we can estimate the joint effect of A_0 and A_1 by conditioning on:



 L_0 , L_1 and W

We could also have interaction between A_0 and A_1 :

$$\mathbb{E}[Y|A_0, A_1, \mathbf{L}_0, \mathbf{L}_1, W] = \beta_0 + \beta_1 A_0 + \beta_2 A_1 + \beta_3 A_0 A_1 + \beta_4 \mathbf{L}_0 + \beta_5 \mathbf{L}_1 + \beta_6 W$$

i.e., the effect of A_0 and A_1 together is more than the sum of their individual contributions.

 eta_1 represents the effect of A_0 when $A_1=0$, conditional on L_0,L_1 and W

 $\beta_1 + \beta_3$ represents the effect of A_0 when $A_1 = 1$, conditional on L_0 , L_1 and W

 eta_2 represents the effect of A_1 when $A_0=0$, conditional on L_0,L_1 and W

 eta_2+eta_3 represents the effect of A_1 when $A_0=1$, conditional on L_0,L_1 and W

 $\beta_1 + \beta_2 + \beta_3$ represents the joint effect of A_0 and A_1 , conditional on L_0, L_1 and W

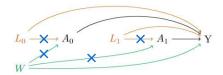
Shi – Time-varying treatment strategies

ESTIMATING THE JOINT EFFECT OF A_0 AND A_1 .

We could also use g-methods, e.g.,

- Inverse probability weighting (more on this tomorrow)
- g-formula (generalization of standardization for time-varying treatments) to estimate the joint effect of A_0 and A_1

With IPW, we're removing the arrows from the confounders $(L_0, L_1 \text{ and } W)$ to treatment $(A_0 \text{ and } A_1)$



In this particular example, conventional methods (e.g., outcome regression, propensity scores) work:

CONVENTIONAL METHODS FOR TIME-VARYING EXPOSURES.

Next, we'll discuss how conventional methods fail when there is treatment-confounder feedback.

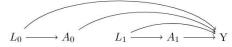
Can only use g-methods (i.e., IPW, g-formula or g-estimation)

Shi – Time-varying treatment-strategies 1

1. Recap 2. Defining causal effects for time-varying treatments 3. Time-varying treatments and confounders on a DAG 4. Sequential exchangeability 5. Treatment-confounder feedback

STRUCTURE OF TREATMENT-CONFOUNDER FEEDBACK.

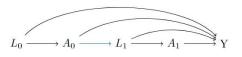
- Treatment-confounder feedback occurs when there is timevarying confounding
- We'll use the same DAG as before, but I'll remove the timefixed confounder *W* to simplify the structure of the DAG:



- Treatment-confounder feedback arises once treatment affects the confounder at a later time
- \cdot i.e., we have treatment-confounder feedback once we add an arrow from A_0 to L_1

Shi – Time-varying treatment strategies

ESTIMATING THE JOINT EFFECT OF A_0 AND A_1 WITH TREATMENT-CONFOUNDER FEEDBACK.



Poll question 1: In the DAG to the left, which variable(s) do we need to condition on in order to block all backdoor paths from A_0 to Y?

- A. L_0
- B. L_1
- $C. A_1$
- D. All of the above

Poll question 2: In the DAG to the left, which variable(s) do we need to condition on in order to block all backdoor paths from A_1 to Y?

- A. L_0
- B. L_1
- C A_{ℓ}
- D. All of the above

ESTIMATING THE JOINT EFFECT OF A_0 AND A_1 WITH TREATMENT-CONFOUNDER FEEDBACK.



We have two exchangeability conditions:

$$Y^{a_0,a_1} \!\!\perp\!\!\!\perp A_0 | L_0$$

 $Y^{a_0,a_1} \!\!\perp\!\!\!\perp A_1 | L_1$

Poll question 3: However, what happens to the effect of A_0 on Y when we condition on L_1 ?

- A. We block some of the effect of A_0 on Y
- B. We introduce selection bias because L_1 is a collider
- C. Nothing

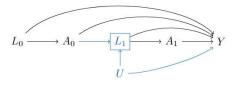
Shi – Time-varying treatment strategies

CONDITIONING ON L_1 .

- Conditioning on L_1 blocks the path $A_0 \to L_1 \to Y$
- We aren't capturing the effect of $A_{\mathbf{0}}$ that is mediated through $L_{\mathbf{1}}$

And it gets worse...

If there are unmeasured confounders (U) between L_1 and Y:

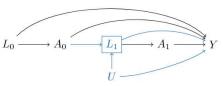


- \cdot L_1 is now a collider
- \cdot Conditioning on L_1 creates selection bias because it opens the biasing path

$$A_0 \to L_1 \leftarrow U \to Y$$

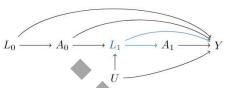
TO STRATIFY OR NOT TO STRATIFY?

If we stratify on L_1 :



- . We block the backdoor path: A_1 to L_1 to Y BUT...
- \cdot We block some of the effect of A_0 on Y
- We introduce selection bias because L_1 is a collider: the path A_0 to L_1 to U to Y is open

If we don't stratify on L_1 :



- We avoid selection bias through L_1
- We estimate the total effect of A_0 on Y (not through A_1)

BUT...

• The effect of A_1 on Y is confounded by L_1

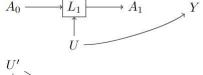
Shi – Time-varying treatment strategies

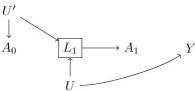
ADDITIONAL DAG STRUCTURES FOR TREATMENT-CONFOUNDER FEEDBACK.

Treatment-confounder feedback occurs if:

- The confounder is affected by treatment; or
- $\boldsymbol{\cdot}$ The confounder and treatment share common causes

Notice that there is an issue of selection bias when conditioning on L_1 even if A_0 , A_1 and L_1 do not have a direct effects on Y





In general, be very cautious about conditioning on post-baseline variables – doing so could introduce selection bias.

METHODS TO HANDLE TREATMENT-CONFOUNDER FEEDBACK.

Conventional methods which eliminate confounding by conditioning on L (or functions of L, i.e., propensity scores) will fail in the presence of treatment-confounder feedback, e.g.

Restriction

• Outcome regression (e.g., linear, logistic, Cox proportional hazards)

· Propensity score adjustment

Need to use g-methods

- G-formula
- · Inverse probability weighting
- G-estimation

Shi – Time-varying treatment strategies

TAKEAWAYS.

- With time-varying treatments, we introduce new notation where the treatment is indexed by time (e.g., A_0 , A_1 , ...)
- Causal effects for time-varying treatments are contrasts between the mean counterfactual outcomes under different treatment strategies:

$$\mathrm{E}[Y^{\bar{a}}] - \mathrm{E}[Y^{\bar{a}'}]$$
 where $\bar{a} = (a_0, a_1, a_2, ...)$

- On a DAG, we indicate time-varying treatments by having separate nodes for each time point
- To estimate the effects of time-varying treatments, we need (conditional) exchangeability to hold for treatment at each time point (i.e. sequential exchangeability)
- In the presence of treatment-confounder feedback, we cannot use conventional methods; we must use g-methods

LEARNING OBJECTIVES.	By the end of the session, you will be able to:1. Formulate causal questions for time-varying treatments2. Describe treatment-confounder feedback and recognize its structure on a DAG
Shi – Time-varying tr	3. Understand why conventional methods fail in the presence of treatment-confounder feedback reatment strategies 1