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A COMPARISON OF ANALYTICAL 
APPROACHES TO OBTAIN MENDELIAN 
RANDOMIZATION ESTIMATES WITH 
LONGITUDINAL EXPOSURES
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FIRST TYPE OF CAUSAL EFFECT: THE POINT EFFECT.
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Point effect:

E 𝑌𝑎𝑚 − E 𝑌𝑎𝑚
′

exposure level 𝑎 at age m (𝑌𝑎𝑚)

exposure level 𝑎′ at age m (𝑌𝑎𝑚
′
)
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Period effect: 

E 𝑌𝑎𝑚−𝑝+1,… ,𝑎𝑚−1+1, 𝑎𝑚+1 − E 𝑌𝑎𝑚−𝑝,…,𝑎𝑚−1,𝑎𝑚

SECOND TYPE OF CAUSAL EFFECT: THE PERIOD EFFECT.

𝑡𝑖𝑚𝑒
0 𝑘𝑚 − 𝑝,… ,𝑚 − 1,𝑚
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SECOND TYPE OF CAUSAL EFFECT: THE PERIOD EFFECT.

1.

2.

This is a weaker form of the assumption 

required for the point effect

With multiple measurements of an 

exposure, we can relax this assumption 

by allowing the association to change 

over time.

2. CAUSAL INTERPRETATIONS 
OF MR ESTIMATES



E 𝑌𝑎𝑚−𝑝=𝑎,… ,𝑎𝑚−1=𝑎, 𝑎𝑚=𝑎 − 𝑌ഥ0|𝐴𝑚−𝑝, … , 𝐴𝑚−1, 𝐴𝑚, 𝑍 = 𝛾(𝑎; 𝜓)
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STRUCTURAL 
MEAN MODELS.

Model for the expected 

difference between two 

counterfactual outcomes
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Function of the exposure, 

indexed by the unknown 

parameter 𝜓

with 𝑝 + 1 measurements of the exposure: 𝛾 𝑎;𝜓 = σ
𝑗=𝑚−𝑝
𝑝

𝜓𝑗𝑎

Homogeneity: Z does not modify the relationship between the 

exposure and the outcome
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G-ESTIMATION.

Define an estimating equation
𝑈 𝜓; Z = 𝐻(𝜓)(Z − E Z )

where 𝐻 𝜓 = 𝑌 − 𝛾(𝑎; 𝜓)

Set 𝐸 𝑈 𝜓; 𝑍 = 0 and solve for 𝜓; for continuous outcomes, 

the solution is:

෠𝜓 =෍

𝑖=1

𝑛

𝑌𝑖 𝑍𝑖 − E 𝑍 /෍

𝑖=1

𝑛

𝐴𝑚,𝑖(𝑍𝑖 − E 𝑍 )

Set the estimating equation to 0 

and solve for 𝜓
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APPLICATION: 
OVERVIEW.

Genetic 
variants (Z)

Alcohol at 
time 1 (A1)

Alcohol at 
time 2 (A2)

GGT 
levels (Y)

Unmeasured 
confounders (U)
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APPLICATION: ANALYSIS.

1.

2.

3.

E 𝑌 − 𝑌ഥ0 𝐴𝑚−𝑝, … , 𝐴𝑚−1, 𝐴𝑚, 𝑍 = 𝜓1𝐴 E 𝑌 − 𝑌ഥ0 𝐴𝑚−𝑝, … , 𝐴𝑚−1, 𝐴𝑚, 𝑍 =෍

𝑗=1

2

𝜓𝑗𝐴
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APPLICATION: 
RESULTS.

Period effect of alcohol 

intake on GGT levels
S

M
M ٠

٠

3. STRUCTURAL 
MEAN MODELS



23

SUMMARY.
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