RISK PREDICTION MODELS FOR ENDOMETRIAL CANCER

DEVELOPMENT AND VALIDATION IN THE EPIDEMIOLOGY OF ENDOMETRIAL CANCER CONSORTIUM

Joy Shi

Instructor of Epidemiology

CAUSALab and Department of Epidemiology Harvard T.H. Chan School of Public Health

June 27, 2023

4th most commonly diagnosed cancer among women in US

MOTIVATION.

Increasing incidence and mortality in the past decade

Increasing prevalence of major endometrial cancer risk factors (e.g., nulliparity)

Can we develop a risk prediction model to identify high-risk?

VAI IDATION

• 146,679 women

• 1,559 incident cases

Nurses Health Study
• 37,241 women

• 532 incident cases

EXISTING PREDICTION MODELS FOR ENDOMETRIAL CANCER: PLCO TRIAL & NIH-AARP STUDY.

MODEL PREDICTORS

DATA

BMI, menopausal hormone therapy (MHT) use, parity, menopausal status, age at menopause, smoking status, oral contraceptive (OC) use, HMT × BMI interaction

AUC: 0.67 E/O ratio: 1.20

Pfeiffer et al., (PLOS Medicine, 2013)

RESULTS

AUC: 0.77 (0.71 for age-only model) E/O ratio: 0.99

Hüsing et al., (EJE, 2016)

Shi – Risk prediction models for endometrial cancer

EXISTING PREDICTION MODELS FOR ENDOMETRIAL CANCER: EPIC STUDY.

PREDICTORS

BMI, menopausal status, age at menarche and menopause, OC use, parity, age at first full-term pregnancy, duration of MHT use, smoking status, OC × BMI interaction

- Internally validated
- Five-fold cross validation

201,811 women 855 incident cases

CURRENT GAPS.

- Models were trained on selective study populations
 - Limited generalizability

(2) Contributions of genetic factors have yet to be assessed

OBJECTIVES.

Develop a model that will predict an individual's 10-year risk for endometrial cancer based on epidemiologic questionnaire data.

Evaluate the model's performance

Ø

Assess the additive contribution of genetic factors to the model.

Reproductive factors

(e.g., age at menarche, age at first birth)

- Lifestyle factors
 - (e.g., smoking, body mass index)
- Exogenous hormone-related factors

(e.g., hormone therapy use)

Medical history

(e.g., diabetes, hypertension)

Interaction terms

MODFL

(e.g., BMI×HT use, BMI×OC use)

Genetic variants

- 18 genome-wide significant single nucleotide polymorphisms (SNPs)
- From O'Mara et al.

(Nature Communications, 2018)

Logistic group LASSO model for variable selection and

regularization

- Age and study site forced into the model
- Remaining model parameters
 were subject to penalization
 - Larger penalty = fewer
 variables retained
 - Leave-one-study-out crossvalidation to select tuning parameter

Corrected for prevalence of

hysterectomy

- Data source for endometrial cancer incidence: SEER
 - NHS: 1989-1993
 - PLCO: 1996-2000
 - NHS II: 2003-2007
- Data source for hysterectomy
 prevalence: BRFSS
 - NHS: 1988
 - PLCO: 1996-1998
 - NHS II: 2006 and 2008

1) Hysterectomy: BRFSS

2) Other cancers: SEER• NHS: 1989-1993

- PLCO: 1996-2000
- NHS II: 2003-2007

3) Death: CDC WONDER

- NHS: 1988
- PLCO: 1997
- NHS II: 2004

METHODS: MODEL VALIDATION DATA.

Nurses' Health Study (NHS)

Nurses' Health Study II (NHS II)

Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Tria • NHS: 121,700 female registered nurses aged 30-55 enrolled in 1976

- NHS II: 116,430 female registered nurses aged 25-42 enrolled in 1989
- Questionnaire data: updated information on risk factors and incident health outcomes collected biennially
- Genetic data: 32,826 blood samples and 29,684 buccal cell samples have been collected since 1989 (NHS)

METHODS: MODEL VALIDATION DATA.

Nurses' Health Study (NHS)

Nurses' Health Study I (NHS II)

Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Population: 78,232 women aged 55-74 years were enrolled between 1993 and 2001 across 10 screening centers
Questionnaire data: baseline and supplemental questionnaire (2006)
Genetic data: blood samples collected at enrollment and annual screening visits

METHODS: MODEL VALIDATION DATA.

Nurses' Health Study (NHS)

Nurses' Health Study II (NHS II)

Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial

- Inclusion criteria: postmenopausal, white, aged 45-75
- Exclusion criteria: no prior history of hysterectomy or cancer
- Follow-up: 10 years or until exclusion criteria are newly met

METHODS: MODEL VALIDATION METRICS.

DISCRIMINATION

 Area under the receiver operating characteristic curve (AUC) based on 10year risk

ABSOLUTE RISK CALIBRATION

- Expected-to-observed (E/O) ratio of 10-year absolute risk across deciles of risk
- Hosmer-Lemeshow χ^2 test

RELATIVE RISK CALIBRATION

 Goodness-of-fit test for predicted versus observed relative 10-year risk across deciles of risk

METHODS: ABSOLUTE RISK ESTIMATES IN MORE CURRENT POPULATION.

Combined:

- Relative risk estimates from group LASSO
 model
- Endometrial cancer incidence rates (SEER 2013-2017)
- Hysterectomy prevalence (BRFSS 2016 and 2018)
- Incidence rates for competing risks
 (2017 CDC WONDER data for mortality; 2013-2017 SEER data for other cancers)
- Risk factor distributions
 (NHANES 2017-2018)

RESULTS: MODEL PREDICTORS.

Characteristics	RR	Characteristics	RR
Demographic factors		Reproductive and hormonal factors	
Education, %		Parity, %	
High school or below	(ref)	0	(ref)
Some college or equivalent	0.97	1	1 10
College or above	0.96	2	0.91
Lifestyle factors		3	0.77
Smoking status, %		>4	0.60
Never smoker	(ref)	Age at first birth, %	0.00
Former smoker	0.80	<20	(ref)
Current smoker	0.64	20 to <25	0.96
Body mass index (kg/m ²), %		25 to <30	0.85
<18.5	0.74	30 to <35	0.83
18.5 to <25	(ref)	≥35	0.84
25 to <30	1.41	Never given birth	1.28
30 to <35	2.49	(cont.)	
≥35	5.57		

RESULTS: MODEL PREDICTORS.

Characteristics	RR	Characteristics	RR
Reproductive and hormonal factors		Reproductive and hormonal factors	
Age at menarche, %		Any E+P HT use, %	0.82
≤9	(ref)	Duration of E+P HT use (years), %	
10-11	1.04	0	(ref)
12-13	1.04	>0 to 5	1.00
14-15	0.92	>5 to 10	1.00
≥16	0.89	>10	1.00
Any HT use, %	1.61	Any OC use, %	0.79
Any E-only HT use, %	1.06	Duration of OC use (years), %	
Duration of E-only HT use (years), %		0	(ref)
0	(ref)	>0 to 5	1.05
>0 to 5	0.84	>5 to 10	0.94
>5 to 10	1.42	>10	0.69
>10	2.55	Clinical factors	
(cont.)		History of diabetes, n (%)	1.39
		History of hypertension, n (%)	1.22

RESULTS: ESTIMATED CUMULATIVE AND 10-YEAR RISKS.

RESULTS: ESTIMATED CUMULATIVE AND 10-YEAR RISKS.

RESULTS: MODEL DISCRIMINATION (EPIDEMIOLOGIC MODEL).

VALIDATION COHORT	NUMBER OF PARTICIPANTS	NUMBER OF EVENTS	AUC (95% CI)
NHS	68,150	700	0.647 (0.626, 0.667)
NHS II	56,076	304	0.693 (0.664, 0.723)
PLCO	39,996	511	0.640 (0.615, 0.665)

RESULTS: MODEL DISCRIMINATION (EPIDEMIOLOGIC + GENETIC MODEL).

VALIDATION COHORT	NUMBER OF PARTICIPANTS	NUMBER OF . EVENTS	AUC (95% CI)		
			EPIDEMIOLOGIC	EPIDEMIOLOGIC +	
			MODEL	GENETIC MODEL	
NHS	11 265	166	0.613	0.613	
(Genetic cohort)	11,505		(0.570, 0.656)	(0.570, 0.656)	
PLCO	20 10 2	401	0.635	0.665	
(Genetic cohort)	50,102		(0.606, 0.664)	(0.636, 0.693)	

RESULTS: MODEL CALIBRATION OF RELATIVE RISKS.

Expected Relative 10-Year Risk

RESULTS: MODEL CALIBRATION OF ABSOLUTE RISKS.

Expected Absolute 10-Year Risk (%)

RESULTS: ESTIMATED RISKS IN A MORE CURRENT POPULATION.

RESULTS: ESTIMATED RISKS IN A MORE CURRENT POPULATION.

SUMMARY

STRENGTHS.

- Prediction model demonstrated
 moderate discrimination
- Well calibrated in NHS II and PLCO
- Based on clinical factors alone
- Minimal improvements with addition of published genetic factors

Potential tool for identifying people at high risk of endometrial cancer

- Screening high risk individuals
- Risk-based prevention strategies
- Enrollment in prevention or screening trials

- Group LASSO vs. stepwise approaches
- Our models included more risk factors (e.g., education, E+P HT use, diabetes, hypertension)
- Smaller AUCs (0.64 to 0.69) in our model than EPIC (0.77)
 - EPIC model largely driven by predictive contribution of age (AUC=0.71 in age-only model)

- We used external data to estimate risk factor distributions and baseline incidence
- Previous models developed on selective populations

Shi – Risk prediction models for endometrial cancer

HOW DOES OUR MODEL COMPARE AGAINST PREVIOUS DISCRIMINATION MODELS?

RECALL BIAS

AVAII ABII ITY OF

GENETIC DATA IN NHS

Could not include family history of endometrial cancer because these data were not collected in NHANES

- Models based on case-control data
- Previous analyses of E2C2 data have reported similar RR estimates between cohort and case-control studies
- Genetic data pooled from GWAS of different disease outcomes
- Matching on factors may explain lower AUC

Expanding to multi-racial/multi-ethnic populations

Shi – Risk prediction models for endometrial cancer

NEXT STEPS

LIMITATIONS &

NEXT STEPS.

ACKNOWLEDGEMENTS.

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

- Immaculata De Vivo
- Margaret Du

PhD Committee Members

- Peter Kraft
- Bernard Rosner
- Miguel Hernan

Funding

• UCB Fellowship

E2C2 collaborators and study participants

You can read more about the study here:

<u>https://news.harvard.edu/gazette/story/2023/02/new-</u> model-identifies-those-at-high-risk-for-endometrial-cancer/

https://pubmed.ncbi.nlm.nih.gov/36688725/

QUESTIONS?

You can connect with me here:

joyshi@hsph.harvard.edu

