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By the end of the session, you will be able to:

1. Define unstabilized and stabilized inverse
probability of treatment weights for time-
varying treatments

| LEARNING OBJECTIVES.

2. Define marginal structural models for time-
varying treatments

3. Implement these methods in R
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1. Recap

2. Data example

" PLAN FOR TODAY. 3. Unstabilized weights for time-varying

treatments

4. Stabilized weights for time-varying
treatments
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A causal effect for a time-varying treatment is a
contrast between the mean counterfactual outcomes
under two different treatment strategies:

E[vy?] — E[r?]

RECAP: CAUSAL
| EFFECT FOR A TIME-
VARYl NG TREATMENT For example, perhaps we want to compare the strategy

"“always treat” against the strategy “never treat”. We can
define the causal estimand as:

E[Y‘_‘ﬂ] . E[Yd’=6]
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To estimate the effect of a time-varying treatment,
sequential exchangeability must hold

- Exchangeability must hold at each treatment time point,

RECAP SEQU ENTIAL conditional on past treatment and covariate history
" EXCHANG EAB“_ITY - No unmeasured confounders for the effect of A, on'Y

for all time points k

Formally:
YU Ap|Ag_y, Ly
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RECAP: TREATMENT-CONFOUNDER FEEDBACK.

Treatment-confounder feedback occurs if:

Ay —

+ The confounder is affected by treatment; or

" + The confounder and treatment share common causes

Conditioning on Lq will l \

block confounding for the effect of A; on'Y

but doing so also

introduces selection bias for the effect of A, on'Y
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RECAP: INVERSE PROBABILITY WEIGHTING.

To adjust for confounding
for a time-fixed treatment:

For people with A = 1: For people with A = 0:
. I 1 I 1
L . A .Y PSS  Pr[A=1|L] ~1—PS Pr[4=0|L]

t t

With high-dimensional data, we can estimate the denominator

We can calculate inverse

probability of treatment
weights: by using logistic regression:

1 logit Pr[A = 1|L] = Bo + B1L1 + BoLa + -

WA
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RECAP: PSEUDO-
POPULATION.

The weighted population is a
" pseudo-population in which
there is no confounding

- Weighting removes the
L — A arrow from the DAG

Y
L—>%—A——Y

It treatment can take on two possible values
(e.g,A=1and A = 0):

+ The size of the pseudo-population is double that of the original
study population (i.e., mean of weights = 2)

- Half are assigned to A = 0 and half are assigned to A = 1

- Distribution of L is the same among those with A =0and A =1

Since there is no confounding in the pseudopopulation, we use
outcome regression in the weighted population without having to
adjust for confounders:

E[Y[|A] = By + B1A

where f; is the estimate for the causal effect, E[Y%=1] — E[Y%70]
(under conditional exchangeability, positivity and consistency)
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RECAP: STABILIZED WEIGHTS.

F ewithA=1- sw=—nA=1
or people wi =1 = —
The weights presented earlier are Pr{d = 1|L]
unstabilized weights:
For people with A = 0: SW = Prid = 0]
W = ! PELp - "~ Pr[A = 0|L]
fAIL)
+ Mean of stabilized weights is 1
W? could also calculate stabilizec + People are randomly assignedtoA=10rA =0
weights according to the observed probability Pr[A = 1]
f(4) | | |
SW = AL -+ Compared to using W, using SW results in narrower

95% confidence intervals if the outcome regression
model is parametric (i.e., not saturated)
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1. Recap

2. Data example

" PLAN FOR TODAY 3. Unstabilized weights for time-varying

treatments

4. Stabilized weights for time-varying
treatments
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SUPPOSE WE’RE Ay antidepressant use during 29 trimester
INTERESTED IN THE EFFECT """ -
OF ANTI_DEPRESSANT USE Ay ?wr‘wt;(iipg‘esns;m use during 3@ trimester
DURING PREGNANCY ON N
BIRTH WEIGHT... | | |

Lo age at conception, education, urban/rural,

living alone, smoking, anxiety, asthma,
@ depressive score, hypertension

Lq: depressive score, hypertension

(Ij ///// U: unmeasured variables

Y: birth weight
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CONDITIONAL EXCHANGEABILITY FOR A,.

e

{}4’1404’151

P

Poll question: What variables do we have to

condition on in order to block all backdoor
paths between A, and Y7

A. Ly only D. Lyand A,
B. LyandU E. Ly Ly and Ay
C. Lgand L,
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CONDITIONAL EXCHANGEABILITY FOR A;.

e

{}4’1404’151

P

Poll question: What variables do we have to

condition on in order to block all backdoor
paths between A; and Y7

A. Ly only D. L and A4,
B. LyandU E. Ly, Lyand A,
C. Ly and Ly
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To estimate the joint effects of Ay and A4, we
need both of the following exchangeability
assumptions to hold:

SEQUENTIAL
EXCHANGEABILITY. Yasasy A, (L, Aq L

Lo Z . A, ; é L é ; A, % v We can't use conventional methods.
T ///// Conditioning on Ly will:
U

» Block confounding for A, but also

Yao’al I AO |LO

- Introduce selection bias for A,
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1. Recap

2. Data example

" PLAN FOR TODAY 3. Unstabilized weights for time-varying

treatments

4. Stabilized weights for time-varying
treatments
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+ For time-varying treatments, we generate separate
weights for treatment at each time point

- Weights for time O incorporate the confounders
for treatment at time O

INVERSE PROBAB”.'TY - Weights for timej incorporate the confounders
" WEIGHTS FOR TIME- for treatment at time 1
VARYING TREATMENTS. o

-+ Weights address confounding by creating a
pseudo-population where the confounders are
balanced between the treated and untreated at
each time point
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DATA EXAMPLE:
UNSTABILIZED WEIGHTS.

L” >An >L1 >A1 > Y
U////

Y01l Ay|Lo

Yao’al 1L A1 |L1, Ao, LO

At time 0, we need to adjust for Ly:
B 1
f(AolLo)

Wo

At time 1, we need to adjust for Ly, Ag and Ly:
1

W, =
LT F(A4]Ly, Ag, L)

We combine these weights by multiplying them
together:

1 1

W= ity FAILs, Ao Lo)
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DATA EXAMPLE:
UNSTABILIZED WEIGHTS NOTATION EXPLAINED.

1 1

W = X
f(A0|Lo) f(AllLl;A();L())
If someoneis Ag =1,4; = 1: If someone is Ag = 0,4; = 0:
W 1 1 " 1 1
= X = X
Pr(Ag = 1|Lo)  Pr(A; = 1[Lq, Ao, Lo) Pr(Ay = 0[Lo)  Pr(A; = 0[Lq, Ag, Lo)

If someone is Ay = 1,4, = 0: If someone is Ay = 0,4, = 1.

1 1 1 1
W = W =

X X
Pr(Ao — 1|Lo) PF(A1 — 0|L1:A0;L0) Pr(Ao - 0|Lo) PF(A1 - 1|L1»A0:Lo)
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DATA EXAMPLE: PSEUDOPOPULATION WITH
UNSTABILIZED WEIGHTS.

1 1
F(AolLy) ~ F(ArILy, Ao Lo)

/ \

W =

Weights for time O remove the arrow Ly = Ay: Weights for time 1 remove the arrows
(1) Ly > Aq, (2) Ag = Ay, and (3) Ly — Ay
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DATA EXAMPLE: PSEUDOPOPULATION WITH
UNSTABILIZED WEIGHTS.

1 1

W= oIty * FAILs, Ao Lo)

When the weights are multiplied, this is what the + W,y has a mean of 2

" DAG would look like in the pseudopopulation: . W, has a mean of 2

m - W hasameanof 2 x2 =4

Lo Ay —— Ly A ——Y - i.e., the pseudopopulation is 4 times as large

T //é// as the original study population because there
U

are four possible treatment strategies:

No confounding for A, or for A;! (ap=1a,=1) (ap=0,a; =0)
(ap=1a,=0) (ap=0,a;,=1)
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DATA EXAMPLE: ESTIMATING UNSTABILIZED WEIGHTS.

1 1

W= oIty FAILs, Ao Lo)

To estimate the denominator these weights, we fit two logistic regression models.
For time 0: logit Pr[Ag = 1|Lo] = By + B1Lo

For time 1: loglt Pr‘[A1 = 1|L1,A0,L0] — :80 + ,81[41 + IBZAO + lB3L0
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DATA EXAMPLE: SATURATED OUTCOME MODEL.

Or, we could fit a saturated/non-parametric
outcome model:

Ag Ly Ay Y E[Y|Ag, A1] = Bo + 140 + B2A1 + f3404,

I

Since there is no confounding in the

Poll question 1: Which of the following corresponds
-tO E[Ya():l,alz() . Ya0=0,a1=0]?

A. D.
pseudopopulation, we can identify the mean ; Fo i Ps .\ E B2 + B3
outcome in each of the four strata: - b - Pt Po . P1t B2+ Ps
C. B . P11+ B3

(AO = 1,A1 — 1) (AO — O,A1 — O)
(AO — 1,A1 — O) (AO — O,A1 - 1)
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DATA EXAMPLE: SATURATED OUTCOME MODEL.

Or, we could fit a saturated/non-parametric
outcome model:

Ag Ly Ay Y E[Y|Ag, A1] = Bo + 140 + B2A1 + f3404,

I

Since there is no confounding in the

Poll question 2: Which of the following corresponds
-tO E[Ya():l,alzl . Ya0=1,a1=0]?

A. D.
pseudopopulation, we can identify the mean ; Fo i Ps .\ E B2 + B3
outcome in each of the four strata: - b - Pt Po . P1t B2+ Ps
C. B . P11+ B3

(AO = 1,A1 — 1) (AO — O,A1 — O)
(AO — 1,A1 — O) (AO — O,A1 - 1)
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DATA EXAMPLE: SATURATED OUTCOME MODEL.

Or, we could fit a saturated/non-parametric
outcome model:

Ag Ly Ay Y E[Y|Ag, A1] = Bo + 140 + B2A1 + f3404,

I

Since there is no confounding in the

Poll question 3: Which of the following corresponds
-tO E[Ya():l,alzl . Ya0=0,a1=0]?

A. D.
pseudopopulation, we can identify the mean ; Fo i Ps .\ E B2 + B3
outcome in each of the four strata: - b - Pt Po . P1t B2+ Ps
C. B . P11+ B3

(AO = 1,A1 — 1) (AO — O,A1 — O)
(AO — 1,A1 — O) (AO — O,A1 - 1)
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DATA EXAMPLE:

outcome model:

UNSATURATED E[Y|A,,
OUTCOME MODEL.

m

AU — Ll Al —_— Y A. 180
C. By
If we think there is no interaction between A,
and A4, we could remove the interaction term.
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Aq]

We could fit an unsaturated/parametric
= fo + B140 + 241

Poll question 1: Which of the following
corresponds to E[Y@0=141=0 _ ya0=0,a:=077

D. B1+ B

E.

Bo + By + B3



DATA EXAMPLE:

outcome model:

UNSATURATED E[Y|A,,
OUTCOME MODEL.

m

AU — Ll Al —_— Y A. 180
C. By
If we think there is no interaction between A,
and A4, we could remove the interaction term.
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Aq]

We could fit an unsaturated/parametric
= fo + B140 + 241

Poll question 2: Which of the following
corresponds to E[Y@0=1a1=1 _ yao=1a:=077

D. B1+ B

E.

Bo + By + B3



DATA EXAMPLE:

outcome model:

UNSATURATED E[Y|A,,
OUTCOME MODEL.

m

AU — Ll Al —_— Y A. 180
C. By
If we think there is no interaction between A,
and A4, we could remove the interaction term.
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Aq]

We could fit an unsaturated/parametric
= fo + B140 + 241

Poll question 3: Which of the following
corresponds to E[Y@0=1a1=1 _ ya0=0,a:=077

D. B1+ B

E.

Bo + By + B3



Regardless of which outcome model we fit, we need to
account for the weighting process in our calculation of

ROBUST STANDARD the variance.
| ERRORS.

Need to estimate robust standard errors.
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1. Recap

2. Data example

" PLAN FOR TODAY 3. Unstabilized weights for time-varying

treatments

4. Stabilized weights for time-varying
treatments
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DATA EXAMPLE: STABILIZED WEIGHTS.

Recall that our unstabilized weights were:

1 1
W = X
@ f(A0|LO) f(AllLl;AO; LO)
Lo » Ag » 1q > Aq > Y
J}, /'/// For stabilized weights, we include functions of

the treatment (and only the treatment) in the
Y@od1])l Ay|L, numerator:

Yo @1l A |Lq, Ao, Ly SW = f(Ao) y f(A1]|Ao)
f(AolLo)  f(A1lL1, Ag, Lo)
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DATA EXAMPLE:
STABILIZED WEIGHTS NOTATION EXPLAINED.

f (Ao) f(41]40)

SW = X
f(AOlLO) f(AllLllAOILO)
If someoneis Ag =1,4; = 1: If someone is Ag = 0,4; = 0:
Pr(4, = 1) Pr(A, = 1|4,) _ Pr(4, =0) Pr(A, = 0|4,)

SW = X SW = X
Pr(Ao — 1|Lo) PI’(A1 — 1|L11A0:L0) Pr(Ao - 0|Lo) PT(A1 - 0|L1»A0»Lo)

If someone is Ay = 1,4, = 0: If someone is Ay = 0,4, = 1.

PI‘(AO — 1) PI‘(A1 — Ole) SW PI‘(AO — O) PI‘(A1 — 1|A0)
Pr(4y = 1|Ly)  Pr(A; = 0|Lq, Ao, Lo) Pr(4y = 0|Ly)  Pr(A; = 1|Lq, Ao, Lo)

SW

Shi— Time-varying treatment strategies 2



DATA EXAMPLE: PSEUDOPOPULATION WITH
STABILIZED WEIGHTS.

Conditioning in the denominator
_ J(4o) f(41]4o) o
SW = AL )Xf(A LA L) removes arrows. Conditioning in
/0 0 ! 1\ 0r =0 the numerator adds arrows.

Weights for time 1 remove the arrows
(1) Ly = Ay, (2) Ag = Aq, and (3) Ly — Ay

BUT the numerator adds the arrow Ay — A;
back:

X— Ap

[

" Weights for time 0 remove the arrow Ly = Ap:
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DATA EXAMPLE: PSEUDOPOPULATION WITH

STABILIZED WEIGHTS.

f(Ao) o f(A1lAp)
f(AolLo)  f(A1|L1, Ag, Lo)

SW =

No confounding for 4,
When the weights are multiplied, this is what the

DAG would look like in the pseudopopulation:

=

T//%/;)Y + SW, has a mean of
U - SW; has a mean of 1

« SW hasameanoflx1=1

A, is confounded by A, (but that's OK because
we condition on Ag in the outcome model)
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DATA EXAMPLE: ESTIMATING STABILIZED WEIGHTS.

Cf(A)  f(AllAy)
W= @il FArILy, Ao, Ly)

Recall, we fit the following logistic regression models for the denominator of the weights:
For time 0: logit Pr[Ag = 1|Lo] = By + B1Lo

For time 1: loglt PI‘[A1 = 1|L1,A0, Lo] — :80 + :81L1 + ﬁZAO + IBBLO

We also need to fit models for the numerator of the weights:
For time O: logit Pr[4, = 1] = B,

For time 1: logit Pr[4A, = 1|4,] = By + P14,
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DATA EXAMPLE:
OUTCOME MODEL.

N

Ay — Ly Al —Y

T///

The outcome model is the same, regardless of
whether we used stabilized or unstabilized weights:

Saturated/non-parametric outcome model:
E[Y|Ag, A1l = Bo + B14o + B2A1 + B3AoA;

Unsaturated/parametric outcome model:
E[Y|Ag, A1l = Bo + B14o + B24A4

Why use stabilized weights?

They are more efficient (i.e., tighter 95% confidence
intervals) when the outcome model is
unsaturated/parametric.
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By the end of the session, you will be able to:

1. Define unstabilized and stabilized inverse
probability of treatment weights for time-
varying treatments

| LEARNING OBJECTIVES.

2. Define marginal structural models for time-
varying treatments

3. Implement these methods in R

Shi— Time-varying treatment strategies 2



